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Abstract 

Bladder cancer, one of the most prevalent malignant cancers, has high rate of recurrence and metastasis. Owing 
to genomic instability and high-level heterogeneity of bladder cancer, chemotherapy and immunotherapy drugs 
sensitivity and lack of prognostic markers, the prognosis of bladder cancer is unclear. Necroptosis is a programmed 
modality of necrotic cell death in a caspase-independent form. Despite the fact that necroptosis plays a critical role 
in tumor growth, cancer metastasis, and cancer patient prognosis, necroptosis-related gene sets have rarely been 
studied in bladder cancer. As a result, the development of new necroptosis-related prognostic indicators for bladder 
cancer patients is critical. Herein, we assessed the necroptosis landscape of bladder cancer patients from The Can-
cer Genome Atlas database and classified them into two unique necroptosis-related patterns, using the consensus 
clustering. Then, using five prognosis-related genes, we constructed a prognostic model (risk score), which contained 
5 genes (ANXA1, DOK7, FKBP10, MAP1B and SPOCD1). And a nomogram model was also developed to offer the clinic 
with a more useful prognostic indicator. We found that risk score was significantly associated with clinicopathologi-
cal characteristics, TIME, and tumor mutation burden in patients with bladder cancer. Moreover, risk score was a valid 
guide for immunotherapy, chemotherapy, and targeted drugs. In our study, DOK7 was chosen to further verify our 
prognosis model, and functional assays indicated that knockdown the expression of DOK7 could prompt bladder can-
cer proliferation and migration. Our work demonstrated the potential role of prognostic model based on necroptosis 
genes in the prognosis, immune landscape and response efficacy of immunotherapy of bladder cancer.
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Background
Bladder cancer (BLCA), one of the most prevalent 
malignant cancers, has high rate of recurrence and 
metastasis, and there is a strong male predominance 
(male to female ratio 3:1) [1]. It is estimated that 
male BLCA new cases and deaths will rank fourth 
and eighth in the United States, respectively [1]. Dur-
ing 1975 to 2018, there is no significant change in the 
incidence of BLCA in men, but the incidence of other 
common tumors such as lung cancer decreased year 
by year [1]. BLCA present as muscle-invasive blad-
der cancer (MIBC), non-muscle-invasive bladder can-
cer (NMIBC) and metastatic diseases, approximately 
75% of newly diagnosed BLCA patients present with 
NMIBC [2]. Radical cystectomy and cisplatin-based 
neoadjuvant chemotherapy are commonly options to 
treat BLCA especially MIBC. And new immunotherapy 
approaches are improving outcomes [3]. Yet, despite 
great progress in diagnosis and treatment, BLCA still 
shows a poor prognosis in high rates of metastasis and 
recurrence. The reason may be genomic instability and 
high-level heterogeneity of BLCA, chemotherapy and 
immunotherapy drugs sensitivity and lack of prognostic 
markers [4–6]. Therefore, there is an essential need to 
develop potential strategy to improve efficacy.

Necroptosis is a programmed modality of necrotic 
cell death in a caspase-independent form [7]. It has been 
reported that necroptosis is mainly mediated by receptor-
interacting protein kinase 1 (RIPK1), RIPK3 and mixed 
lineage kinase domain-like pseudo kinase (MLKL), while 
necrostatin-1 (Nec-1) inhibits it [8]. Different with apop-
tosis, morphological features of necroptosis are typified 
as cell membrane rupture, organelle swelling and increas-
ingly translucent cytoplasm [9, 10]. With the rupture of 
plasma membrane, cell contents are released which could 
lead to the exposure of damage-associated molecular pat-
terns (DAMPs) and powerful inflammatory responses 
[11]. The dual-effects of necroptosis on cancer have been 
proven [12]. On the one hand, with the downregulation 
of necroptotic factors, it could cause a worse prognosis 
[13–15]. On the other hand, the upregulation of necrop-
totic factors also could lead to a worse prognosis and 
promote oncogenesis [16, 17]. Chemotherapy failure is a 
hard but common problem, and drug resistance induced 
by apoptosis plays a major role in it [12, 18]. There are 
lot of reports that chemotherapeutic agents could trig-
ger necroptosis in cancer [19, 20], so we believe induced 
necroptosis may provide an effective therapy strategy in 
anti-cancer. Furthermore, RIPK1 expression and NF-κB 
activation during necroptosis could play a role of anti-
tumor immunity by activate CD8+T cells [21, 22]. Thus, 
necroptosis may also be of vital potential in the prognosis 
and therapy of BLCA.

Herein, we used multi-omics analysis to analysis the 
differences between necroptosis-related patterns based 
on the expression patterns of necroptosis-related genes 
(NRGs). Next, to predict the OS of BLCA patients, a 
prognostic model was constructed and validated its prog-
nostic accuracy. In addition, we also built a nomogram 
model to provide clinical BLCA patients with precise and 
stable prognostic forecasts. Mutation profile, immune 
cell infiltration and immunotherapeutic and chemother-
apeutic efficacy were also explored. Our study may pro-
vide a prognosis predicter and novel therapeutic targets 
for BLCA patients.

Methods
Obtaining and processing data
The datasets we used were all publicly available. Data of 
clinical information, somatic mutation and gene expres-
sion were obtained from The Cancer Genome Atlas 
(TCGA) data portal (https://​portal.​gdc.​cancer.​gov/). 
Data of clinical information and gene expression from 
the GEO database (https://​www.​ncbi.​nlm.​nih.​gov/​geo/, 
GSE13507) were used as an external test set. Next, in 
order to normalize the raw expression data, we used 
Robust Multiarray Average [23]. We obtained 74 NRGs 
from previous study [24]. Immunohistochemical (IHC) 
staining of DOK7 between BLCA and normal tissues 
were directly visualized by HPA (https://​www.​prote​inatl​
as.​org) [25].

Consensus clustering
In our study, we used consensus clustering to classify 
TCGA-BLCA cohort based on the expression of progno-
sis-related NRGs mRNA [26]. According to methods of 
previous study [27], the ideal cluster number was found 
to be k = 2. The classification was verified by PCA based 
on the expression of prognosis-related NRGs mRNA of 
TCGA-BLCA cohort.

Tumor immune microenvironment evaluation
ssGSEA, CIBERSORT, and ESTIMATE were used 
in R to evaluate the TIME status of each BLCA sam-
ple. The enrichment scores of immune functions and 
immune cells were quantified using ssGSEA. ESTI-
MATE was applied for assess of the stromal, ESTIMATE 
and immune score. 22 tumor-infiltrating immune cells 
(TIICs) were valued by CIBERSORT algorithm.

Functional enrichment analysis of DEGs 
between necroptosis‑related patterns
After consensus clustering, we examined the distinction 
of biological pathways of different expression gene set 
(DEGs) between necroptosis-related patterns through 
KEGG [28] and GO and pathway enrichment analyses. 

https://portal.gdc.cancer.gov/
https://www.ncbi.nlm.nih.gov/geo/
https://www.proteinatlas.org
https://www.proteinatlas.org
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The GO terms were in the cellular component (CC), bio-
logical process (BP) and molecular function categories 
(MF).

Establishment and validation of the prognostic model
We obtained the coefficient and selected the minimum 
criteria threshold for further screening 7 genes using 
LASSO Cox regression analysis. Eventually, the stepwise 
regression analysis provided a more practical and optimal 
model with five genes. In addition, the risk score formula 
was as follows:

Based on the formula, we chose the mean value of 
risk score to divide TCGA-BLCA cohort into high- and 
low-risk groups. Next, the prognostic model’s prediction 
ability was evaluated using the receiver ROC curve and 
Kaplan–Meier analysis. The GSE13507 datasets used the 
same approaches to validate the model.

Calculation of tumor microenvironment cell infiltration
XCELL, MCPCOUNTER, CIBERSORT, TIMER, EPIC, 
QUANTISEQ, and CIBERSORT-ABS were utilized to 
assess the relative proportions of infiltrating immune 
cells [29]. Spearman’s rank correlation analysis was used 
when groping the correlation between the immune infil-
trated cells and the risk score.

Evaluation of chemotherapy and immunotherapy drugs’ 
efficacy
The pRRophetic software package was used to calculate 
the half-maximal inhibitory concentration (IC50) values 
of commonly used chemotherapy and immunotherapy 
drugs.

Cell culture and transfection
The human bladder cancer cell line 5637 was bought 
from the Cell Bank of Type Culture Collection of Chinese 
Academy of Sciences (Shanghai, China) and cultured in 
RPMI1640 supplemented with 10% FBS and penicillin–
streptomycin (100 U/mL) in a humidified atmosphere of 
5% CO2 at 37 °C. For the knockdown assay, small inter-
fering RNA targeting DOK7 (siDOK7) was applied, and 
scramble siRNAs (siNC) as the negative control. The 
siRNA sequences targeting DOK7 was as follows: DOK7 
siRNA sequence 5′-CUG​GUC​UAC​AAG​GAC​AAG​UTT-
3′; siNC (noncoding control): 5′-UUC​UCC​GAA​CGU​
GUC​ACG​ U-3′.

Risk score =

i

n=1

exp Genei × coefficient Genei

Cell counting assay‑8(CCK‑8), wound healing assay 
and transwell migration assay
CCK8 assay (MCE, American) was used to analyze 
cell proliferation. 1 × 103 cells were cultured in 96-well 
plates for 24  h, 48  h and 72  h. Then, after incubation, 
10 μL of CCK8 reagent was added into every well of 
96-well plates and incubated for 2  h. After incubation 
of CCK8 reagent, we measured the OD value at 450 nm.

For the wound healing assay, the cells were plated 
in six-well plates, and cultured until 90% confluent. 
The confluent monolayer was wounded with a 200-μL 
pipette tip, and the unattached cells were removed. The 
scratches were observed at 0  h and 24  h after incuba-
tion of the monolayers in the FBS-free medium.

For migration assay, 1 × 104 bladder cancer cells were 
seeded on the upper 24-well transwell chambers (Corn-
ing) and culture for 24  h. After incubation, the cells 
move to the bottom of the 24-well chamber, followed 
by fixing with 4% formaldehyde and dyeing with crystal 
violet reagent.

Statistical analysis
All statistical analyses were performed using the R 
software (version 4.1.2). The Wilcoxon rank-sum test, 
paired samples t-test, and Kruskal–Wallis test were 
employed to validate the statistical difference between 
two groups or more than two groups, respectively. The 
correlation coefficients between tumor mutation bur-
den (TMB), immune checkpoint genes (ICGs) expres-
sion, and risk score were calculated by Spearman’s 
correlation analysis. P value < 0.05 was defined as a sta-
tistically significant standard.

Results
Consensus clustering of necroptosis‑related patterns 
in TCGA‑BLCA cohort
Using univariate COX regression, we selected 11 prog-
nosis-related NRGs from 74 NRGs (Fig.  1A). Based 
on 11 prognosis-related NRGs, we performed consen-
sus clustering on TCGA-BLCA cohort. According to 
cophenetic coefficients, k = 2 was found to be the ideal 
cluster (Fig.  1B, C). Ultimately, we identify two differ-
ent necroptosis-related patterns named cluster A and 
cluster B. After clustering, Kaplan–Meier analysis dem-
onstrated that cluster A has significantly better survival 
time than cluster B (Fig. 1D). Next, we performed PCA 
to show the distinction between cluster A and clus-
ter B at the 11 prognosis-related NRGs transcription 
level (Fig.  1E). The transcription profile of 11 progno-
sis-related NRGs was presented as heatmap (Fig.  1F). 
As Fig.  1G showed that the distribution of age, grade, 
pathologic stage, T stage and N stage were significantly 
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Fig. 1  Consensus Clustering of Necroptosis-Related Patterns in TCGA-BLCA cohort. A Prognosis-related NRGs selected by univariate COX regression 
analysis. B Consensus matrix heatmap defining two clusters (k = 2) and their correlation area. C Cumulative distribution function curve. Kaplan–
Meier analysis (D) and PCA analysis (E) of necroptosis-related patterns. F NRGs with a prognosis-related expression profile. G Clinical relevance of 
necroptosis-related patterns. *p < 0.05; **p < 0.01; ***p < 0.001
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distinct between cluster A and cluster B by chi-square 
test.

Tumor immune microenvironment of necroptosis‑related 
patterns
By using GSEA analysis, we confirmed that cluster A has 
higher concentration in metabolism, while cluster B has 
a higher concentration in carcinogenic-related pathways 

and immune-related diseases (Fig. 2A, B). To distinguish 
the associations between tumor immune microenvi-
ronment and two subtypes, we first using ESTIMATE 
to calculated the tumor microenvironment composi-
tion (Fig.  2C). The StromalScore, ImmuneScore, and 
ESTIMATEScore of cluster A were all notably lower 
than those in cluster B. In addition, several immune 
checkpoints expression, including PDCD1, CD274, 

Fig. 2  Correlation between the tumor immune microenvironment and necroptosis-related patterns. Heatmap of GSEA analysis results based on 
KEGG gene set (A) and HALLMARK gene set (B). C A comparison of stromal, immune, and ESTIMATE scores. D Differential analysis of ICGs expression. 
E Infiltration of 23 TIICs in two necroptosis-related patterns. F Enrichment scores of immune-related functions in two necroptosis-related patterns. 
*p < 0.05; **p < 0.01; ***p < 0.001, ns = no significance
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PDCD1LG2, IDO1, LAG3, TIGIT and CTLA4, were 
higher in cluster B (Fig.  2D). Moreover, the infiltration 
of B cells, eosinophilna, T cells, macrophages, dendritic 
cells and neutrophils in cluster B were notably higher 
than those in cluster A (Fig.  2E). Uniformly, almost all 
immune functions were highly expressed in cluster B 
(Fig. 2F).

Figure  3A showed the DEGs between necroptosis-
related patterns by volcano plot. Functional enrichment 
analyses of DEGs between two subtypes were applicable 
to grope diversities the molecular diversity. GO analysis 
indicated that DEGs were mainly involved in positive 
regulation of cell activation and multiple immune-related 
biological processes (Fig. 3B). Cellular Components were 
mostly located in collagen − containing extracellular 
matrix, external side of plasma membrane and immu-
noglobulin complex (Fig. 3C). Molecular functions were 
mostly concentrated in antigen binding, extracellular 
matrix structural constituent and glycosaminoglycan 
binding (Fig. 3D). Consistently, the DEGs were related to 
several immune-related pathways, such as the chemokine 
signaling pathway, TGF-β signaling pathway and NF-κB 
signaling pathway (Fig. 3E).

Establishment and validation of the prognostic model 
in TCGA‑BLCA cohort
Based on the necroptosis-related patterns and prognosis-
related genes between two subtypes, we established a 
prognostic model to obtain a metrics that could correctly 
predict the clinical survival of BLCA patients. The mini-
mum threshold for further screening 9 genes was deter-
mined using LASSO Cox regression analysis (Fig.  4A, 
B). After optimizing the model with stepwise regression 
analysis, only five genes remain: ANXA1, DOK7, FKBP10, 
MAP1B and SPOCD1. We also obtained a quantitative  

metrics: Risk score = (FKBP10 expression × 0.13145) +  
(MAP1B expression × 0.13152) + (ANXA1 expression ×  
0.16761) − (SPOCD1 expression × 0.14438) − (DOK7 exp 
ression × 0.14033). Based on the formula and the mean 
value of risk score, we divided patients into the high- and 
low-risk group. According to Kaplan–Meier analysis, the 
OS of BLCA patients in the low-risk group was signifi-
cantly better than that of the high-risk group (Fig.  4C). 
Additionally, the AUCs for OS survival at 1, 3 and 5 years 
were 0.702, 0.697 and 0.671, respectively (Fig.  4D). Fig-
ure  4E, F showed that the proportion of deaths were 
positively associated with risk scores. The expression 
of SPOCD1 and DOK7 were negatively correlated with 
risk score, whereas FKBP10, MAP1B and ANXA1 were 
increased with the increasing of risk score (Fig. 4G).

Besides, we used GSE13507 as a test set to further 
validate the accuracy of risk score in BLCA patients. 
We used the same formula to quantify the samples in 
the test set and group them with the same cutoff values. 
Kaplan–Meier analysis indicated high risk score signifi-
cantly correlated with poor OS (Fig. 4H). The AUCs for 
OS survival at 1, 3 and 5 years were 0. 723, 0. 662 and 
0. 630, respectively (Fig.  4I). Risk score distribution, 
survival status and expression profile heatmaps showed 
similar tendencies to the training set (Fig. 4J–L). Hence, 
we believe that the prognostic model could be an accu-
rate and effective risk factor for BLCA.

Clinical relevance of the prognostic model
We assessed the connection between clinicopathological 
parameters and risk score to further investigate the clinical 
relevance of the prognostic model. Just as Fig. 5A showed 
that patients older than 65  years scored higher than 
patients less than or equal to 65 years. And with the grade, 
pathologic stage, and TNM stages progressed, the risk 

Fig. 3  Functional enrichment analyses of DEGs between necroptosis-related patterns. A DEGs between necroptosis-related patterns. Biological 
process (B), cellular component (C), molecular function (D), and KEGG pathways (E)
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score increased significantly (Fig. 5B–F). But there was no 
statistical distinction between the gender groups (Fig. 5G).

Furthermore, we used univariate and multivari-
ate Cox regression analysis to see if risk score was a 

reliable prognostic factor for BLCA patients. In univariate 
Cox regression analysis, age, pathological stage, T stage, N 
stage, and risk score were identified as risk factors (Fig. 5H). 
The risk score was subsequently validated using multivariate 

Fig. 4  Construction and validation of the prognostic model based on the TCGA-BLCA cohort and GSE13507. A, B LASSO COX regression analysis. 
Kaplan–Meier analysis (C), time-dependent ROC curve (D), risk score distribution (E), heatmap of survival statue (F), and heatmap of NRG expression 
profile (G) based on the TCGA-BLCA cohort. Kaplan–Meier analysis (H), time-dependent ROC curve (I), risk score distribution (J), heatmap of survival 
statue (K), and heatmap of NRG expression profile (L) based on the GSE13507
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Cox regression analysis, indicating that it may be utilized as a 
reliable independent predictive indicator for BLCA patients 
(Fig. 5I).

Construction of a nomogram model based 
on the prognostic model
Based on the above results, patients of high- and low-
risk group were assigned the corresponding scores, and 
the other predicters (N stage, gender, T stage, patho-
logic stage and age) were also assigned scores respec-
tively. Based on that, we constructed a nomogram model 
(Fig. 6A). It was show that the 59 years old female patient 
we select belongs to the low-risk group, at T3N0 stages 
and pathologic stage III. The assigned scores of the 
patient were 35, 42, 57, 57, 68 and 69, respectively, with 
final overall scores of 328. Survival rates were 0.913, 

0.759, and 0.707 after 1-, 3-, 5-year, respectively. Next, 
the calibration plots also confirmed the excellent predic-
tive accuracy of the nomogram model (Fig. 6B).

Next, Fig. 6C presented the ROC curves of the nomo-
gram and its constituent variables for OS. The AUCs of 
the nomogram and risk for predicting OS survival rate 
were 0.768 and 0.713, respectively. Consistently, DCA 
curves demonstrated that risk and nomograms have 
higher clinical application than pathological staging, age 
and gender in predicting patient OS (Fig. 6D).

Correlation between tumor immune microenvironment 
and the prognostic model
We further analyzed the correlation between TIME and 
prognostic model. Using the ESTIMATE algorithm, we 
first calculated the difference in TME score between 

Fig. 5  Clinical relevance of the Prognostic model. A–G Risk score differences between risk score defined groups of clinicopathological parameters, 
including age (A), grade (B), pathologic stage (C), T stage (D), M stage (E), N stage (F) and gender (G). Univariate (H) and multivariate (I) Cox 
regression analysis of risk score and clinicopathological parameters. *p < 0.05; **p < 0.01; ***p < 0.001, ns = no significance
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high- and low-risk groups (Fig. 7A). The Wilcoxon rank-
sum test advised that StromalScore, ImmuneScore and 
ESTIMATEScore in the low-risk group are significantly 
lower compare to the high-risk group. The correlation 
between immune cells and risk score was calculated as 
well (Fig.  7B). ssGSEA suggested that the majority of 
immune-related functions were strongly concentrated in 
the high-risk group (Fig.  7C). Then, GSEA was utilized 
to investigate potential biological processes and signal 
pathways. Based on the KEGG gene set, we noticed the 
concentration level of high-risk group in cell adhesion 
molecules cams, ECM receptor interaction, cytokine-
cytokine receptor interaction, hematopoietic cell lineage 
and neuroactive ligand receptor interaction (Fig.  7D). 
While the concentration level of low-risk group in drug 
metabolism-cytochrome P450, metabolism of xeno-
biotics by cytochrome p450, Pentose and glucuronate 

interconversions, Porphyrin and chlorophyll metabolism 
and steroid hormone biosynthesis (Fig. 7E).

Next, the CIBERSORT algorithm was applied to cal-
culate the fraction of 22 TIICs in each TCGA-BLCA 
sample. A grouping histogram depicting the distribu-
tion of TIICs in BLCA (Fig. 8A). Then, we fund that the 
fractions of activated CD4 memory T cell, M0, M1 and 
M2 Macrophages were significantly higher in the high-
risk group (Fig. 8B), while memory B cells, CD8 T cells, 
naïve CD4 T cells, follicular helper T cells (Tfh), regula-
tory T cells (Tregs), monocytes, resting and activated 
dendritic cells (DCs) were significantly higher in the 
low-risk group (Fig. 8B). Higher proportions of memory 
B cells and lower fractions of activated CD4 memory 
T cell, Tfh, CD8 T cells and resting DCs among these 
differently distributed TIICs were substantially linked 
with poor OS in BLCA patients (Fig. 8C–G). Hence, we 

Fig. 6  Nomogram model construction. A Nomogram predicting the likelihood of OS in 1, 3, and 5 years. B Calibration curves for assessing the 
suitability of the nomogram model in 1, 3 and 5 years. C ROC curves of the nomogram, risk and its constituent variables (age, gender, pathologic 
stage, T stage, N stage) for predicting OS. D DCA curves
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believe necroptosis might regulate these TIICs to affect 
the prognosis of BLCA patients.

Correlation between the prognostic model and somatic 
mutation and drug sensitivity
There was a lot of evidence that tumorigenesis was asso-
ciated with accumulation of gene mutations. Figure 9A, 
B revealed simple nucleotide variation of risk score 
groups in BLCA cases, suggesting that the 20 genes with 
the highest mutation rate in BLCA were TP53, TTN, 
KMT2D, MUC16, ARID1A, KDM6A, PIK3CA, SYNE1, 
RB1, FGFR3, HMCN1, KMT2C, RYR2, MACF1, EP300, 

FLG, FAT4, STAG2, ATM and OBSCN. Then, to split 
patients into low- and high-TMB groups, we determine 
the best TMB cutoff value. BLCA patients with lower 
TMB were associate with poorer OS (Fig.  9C). In addi-
tion, BLCA patients with lower TMB and higher risk 
scores have poorer OS survival probability, whereas 
BLCA patients with higher TMB and lower risk scores 
have greater OS (Fig. 9D).

In addition, we investigated potential correlations 
between ICGs expression and risk score. Figure  9E 
showed that risk score was significantly positively asso-
ciated with the expression of PDCD1, CTLA4, POLE2, 

Fig. 7  Correlation between the prognostic model and tumor immune microenvironment. A A comparison of stromal, immune, and ESTIMATE 
scores. B The relationship between immune cells and risk Score. Each color represented a distinct algorithm. C Enrichment scores for 
immune-related functions in groups defined by risk scores. GSEA analyses based on KEGG in the high-risk group (D) and the low-risk group (E). 
*p < 0.05; **p < 0.01; ***p < 0.001, ns = no significance
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FEN1, MCM6, POLD3, CD274, MSH6, FAP and LOXL2. 
And the TIDE score was significantly lower in low-
risk group (Fig. 9F). As a result of the abovementioned, 
immunotherapy was more likely to benefit BLCA patients 
in the high-risk group.

Next, we calculated IC50 values to predict risk score 
for chemotherapy and immunotherapy drugs. The IC50 
value of doxorubicin, docetaxel, cisplatin, tipifarnib, 
sunitinib, sorafenib and pazopanib was notably lower 
in the high-risk group, suggesting that BLCA patients 
with high-risk score were more benefit from these drugs 
(Fig. 9G–M).

Functions of the identified biomarker in bladder cancer 
progression
Five genes in our prognostic model, ANXA1, MAP1B and 
SPOCD1 have been reported in bladder cancer, however 
DOK7 and FKBP10 has not been studied in bladder can-
cer [30–33]. There was reported that DOK7 could inhibit 
breast cancer cell invasion and migration ability via PI3K/

PTEN/AKT pathway [34], and in our above results, the 
DEGs were related to PI3K/AKT signaling pathway. So, 
we chose DOK7 to further verify our prognostic model. 
According to the data of TCGA, patients who have higher 
expression of DOK7 have a better OS, and with the staging 
increase the expression of DOK7 has decreased (Fig. 10A, 
B). In addition, we investigated the protein expression of 
DOK7 in high grade tumor, low grade tumor and normal 
bladder tissues respectively by using the HPA dataset, and 
immunohistochemical staining indicated the positive stain-
ing intensity of DOK7 in normal bladder tissues as notably 
stronger than BLCA tissues. Moreover, tumor samples with 
a low pathological grade revealed stronger expression than 
tissues with a high grade by HPA (Fig. 10C).

Last, functional studies were performed by using small 
interfering RNAs (siRNAs) to knockdown of DOK7, 
and the results indicated that the knockdown of DOK7 
could promote the cell proliferation and migration ability 
(Fig. 10D–F). All of the results were consistent with our 
prognostic model.

Fig. 8  Correlation between the fraction of 22 TIICs and the prognostic model. A Proportion of 22 TIICs in BLCA. B Differential analysis of 22 TIIC 
fractions between risk score-defined groups. C–G Association between the infiltration level of TIICs [activated CD4 memory T cells (C), follicular 
helper T cells (D), CD8T cells (E), memory B cells (F), resting dendritic cells (G)] and OS of BLCA patients. *p < 0.05; **p < 0.01; ***p < 0.001, ns = no 
significance

(See figure on next page.)
Fig. 9  Correlation between the prognostic model and somatic mutation and drug sensitivity. A, B Waterfall plots of 20 genes with the highest 
mutation rate in the high-risk group (A) and low-risk group (B). Kaplan–Meier analysis of TMB in BLCA patients based on TMB defined groups (C) and 
risk score with TMB-defined groups (D). E Correlation between expression of ICGs and risk score. F TIDE score. Correlation between the Prognostic 
model and IC50 values of chemotherapy and immunotherapy drugs, including doxorubicin (G), docetaxel (H), cisplatin (I), tipifarnib (J), sunitinib (K), 
sorafenib (L) and pazopanib (M)
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Fig. 9  (See legend on previous page.)
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Discussion
Despite significant advancements in diagnosis and ther-
apy, bladder cancer remains a serious clinical problem 
due to high rates of recurrence and metastasis [4]. As a 
result, optimizing therapy regimens to reduce BLCA 
patient mortality is critical.

There are several prognostic models about bladder can-
cer have been explored, and they classified bladder cancer 
with pyroptosis-related genes, ferroptosis-related genes, 
and neutrophil-related genes or m6A-immune-related 
lncRNA [35–38]. But our prognostic model is based on 
necroptosis-related genes in bladder cancer, and to pre-
dict the prognosis and treatment of bladder cancer.

In our study, by consensus clustering, we uncovered 
two necroptosis-related patterns using BLCA samples 
from the TCGA-BLCA. Cluster B has a much lower OS 
survival rate and a significantly higher percentage of 
patients in advanced clinicopathological stages. In addi-
tion, several immune checkpoints were discovered to be 
substantially expressed in Cluster B (PDCD1, CD274, 
IDO1, PDCD1LG2, LAG3, TIGIT and CTLA4). Fur-
thermore, TME immune cell infiltration and biological 
pathway enrichment differ between these two necrop-
tosis-related patterns. Cluster B was distinguished by 
significant levels of TME immune cell immersion and 
adaptive immunity activation in this pattern. Based on 
above results, we hypothesized that immune check-
points genes expressed high-level could strengthen T cell 

activation and activate the immune pathway to weak the 
effects of tumor suppression and elimination [39], and 
we believed that necroptosis may has a critical role in 
BLCA’s immune landscape regulation and may be a prog-
nosis predictor.

Next, we established a prognostic model including five 
genes (ANXA1, DOK7, FKBP10, MAP1B and SPOCD1) 
to obtain a metrics that can forecast the clinical sur-
vival rate of BLCA patients accurately and effectively. A 
series of analyses indicated that BLCA patients in high-
risk groups have poorer OS and prognosis event in the 
TCGA-BLCA cohort. And it was consistently verified in 
GSE13507 cohort. The risk score was subsequently vali-
dated using univariate and multivariate Cox regression 
analysis, indicating that it may be utilized as a reliable 
independent prognostic indicator for BLCA patients. 
ANXA1 is a member of annexins superfamily, and plays 
a role in inflammation regulation and can influence T 
cell proliferation [40, 41]. ANXA1 also could promotes 
the progression and drug resistance in bladder cancer 
[30, 42]. DOK7 is a docking protein correlate with tumor 
recurrent and an indicator of cancer risk [43–45]. Over-
expression of FKBP10 is find to boost cancer progression 
by restrict antitumor immunity or activate tumor-related 
signaling pathways [46, 47]. MAP1B, one of microtubule-
associated proteins (MAPs), is reported as the most 
significant upregulated gene in urothelial carcinoma pro-
gression [31]. And phosphorylation of MAP1B associate 

Fig. 10  Functions of the identified biomarker in bladder cancer progression. A Relationship between the expression level of DOK7 and OS in TCGA. 
B Relationship between the expression level of DOK7 and cancer stage in TCGA. C Immunohistochemical (IHC) analysis of DOK7 in normal bladder 
tissues and tumor tissues with different grades of malignancy. D–F CCK-8, wound healing and transwell migration assay for analyzing the effect of 
DOK7 knockdown on cell proliferation and migration
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with drug sensitive in human glioblastoma [48]. SPOCD1 
could inhibits cell apoptosis through PI3K/AKT pathway 
and accelerates ovarian cancer progression [49]. How-
ever, DOK7 and FKBP10 have not been reported as pre-
dictor of BLCA patients. Because of DOK7 could inhibit 
breast cancer cell invasion and migration ability via 
PI3K/PTEN/AKT pathway, and our result showed a simi-
lar pathway. Based on that found, we thought that DOK7 
may also could prompt or inhibit bladder cancer. Accord-
ing to the data of TCGA and HPA, the higher expression 
of DOK7 indicated a bad prognosis, and the results were 
consistent with our prognostic model. To further verify 
the functions of DOK7 in bladder cancer, we used siRNA 
to knockdown the expression of DOK7. Consistently, 
with the knockdown of DOK7, bladder cancer cell prolif-
eration and migration abilities were promoted.

In consideration of the powerful inflammatory, we 
explored the correlation between TME and the risk score. 
Our result showed the high-risk group has a considerably 
higher StromalScore, ImmuneScore and ESTIMATEScore, 
indicating that their tumor purity was lower and may asso-
ciated with poor prognosis [50]. In addition, the fractions 
of activated CD4 memory T cell, M0, M1 and M2 Mac-
rophages were significantly higher in the high-risk group, 
while memory B cells, CD8 T cells, naïve CD4 T cells, 
Tfh, Tregs, monocytes, resting and activated dendritic 
cells were significantly higher in the low-risk group. Sev-
eral research reported that the infiltration of memory B 
cells, CD8 T cells DCs, and Tfh cells in tumor may associ-
ate with better prognosis [51–54], while M2 macrophage 
infiltration correlates with chemotherapy resistance and is 
associated with a poor prognosis in most cancers [55, 56]. 
Besides, monocytes also could activate antigen-presenting 
cells to play a role of antitumor effectors [57]. Other study 
report Tregs could promote tumor progression by form an 
immunosuppressive microenvironment [58]. But in our 
study memory B cells with high components of the TME 
and CD4 memory T cell with low components of the TME 
are mean poor prognosis. The conflict requires further 
investigation in order to be fully understood.

Gene mutations play a critical part in the development 
of BLCA, and somatic mutations are considered the pri-
mary drivers of antitumor adaptive immune response 
[59]. Our study demonstrated BLCA patients with higher 
TMB have a better OS survival probability. We also com-
bine risk score and TMB to predict the OS of BLCA 
patients, and the result show that BLCA patients with 
low-risk score and high TMB have the greatest OS sur-
vival probability. Immune checkpoint inhibitors (ICIs) 
efficacy are reported have a correlation with TMB, and 
cancer patients with high TMB seem like to have better 
reaction to ICIs [60, 61]. Next, we assessed the prognostic 

model’s ability to predict chemotherapy and immu-
notherapy drug benefit in BLCA patients. The result 
showed that compared with the low-risk group, doxoru-
bicin, docetaxel, cisplatin, tipifarnib, sunitinib, sorafenib 
and pazopanib were significantly benefit in the high-risk 
group. When taken as a whole, the prognostic model may 
provide better therapy strategies for BLCA patients.

There are still some limits to our research. First, the 
samples are constrained because of sample size and sam-
ple origin from public datasets. Second, the prognos-
tic model needs clinical studies to confirm its accuracy 
and stability. Moreover, RNA expression is not com-
pletely present protein level. As a result, more research is 
required to overcome these limitations.

Conclusion
In summary, our research identifies a novel prognostic 
model for predicting prognosis of BLCA patients. Based 
on our prognostic model, we believe that we could make 
an accurate judgment based on the different conditions 
of bladder cancer patients and could provide references 
for individualized treatment of chemotherapy and immu-
notherapy drugs.
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