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Abstract 

Objective  Clear cell renal cell carcinoma (ccRCC) is a malignant renal tumor that is highly prone to metastasis and 
recurrence. The exact pathogenesis of this cancer is still not well understood. This study aimed to identify novel hub 
genes in renal clear cell carcinoma and determine their diagnostic and prognostic value.

Methods  Intersection genes were obtained from multiple databases, and protein–protein interaction analysis and 
functional enrichment analysis were performed to identify key pathways related to the intersection genes. Hub genes 
were identified using the cytoHubba plugin in Cytoscape. GEPIA and UALCAN were utilized to observe differences 
in mRNA and protein expression of hub genes between KIRC and adjacent normal tissues. The Wilcoxon rank sum 
test was used to analyze hub gene levels between paired KIRC and matched non-cancer samples. IHC results were 
obtained from the HPA online database, and according to the median gene expression level, they were divided into 
a high-expression group and a low-expression group. The correlation of these groups with the prognosis of KIRC 
patients was analyzed. Logistic regression and the Wilcoxon rank sum test were used to test the relationship between 
SLC34A1 level and clinicopathological features. The diagnostic value of SLC34A1 was evaluated by drawing the 
receiver operating characteristic (ROC) curve and calculating the area under the curve (AUC). Cox regression analysis 
was used to analyze the relationship between clinicopathological features, SLC34A1 expression, and KIRC survival 
rate. LinkedOmics was used to obtain the genes most related to SLC34A1 and their functional enrichment. Genetic 
mutations and methylation levels of SLC34A1 in KIRC were obtained from the cBioPortal website and the MethSurv 
website, respectively.

Results  Fifty-eight ccRCC differential genes were identified from six datasets, and they were mainly enriched in 10 
functional items and 4 pathways. A total of 5 hub genes were identified. According to the GEPIA database analysis, 
low expression of SLC34A1, CASR, and ALDOB in tumors led to poor prognosis. Low expression of SLC34A1 mRNA was 
found to be related to clinicopathological features of patients. SLC34A1 expression in normal tissues could accurately 
identify tumors (AUC 0.776). SLC34A1 was also found to be an independent predictor of ccRCC in univariate and 
multivariate Cox analyses. The mutation rate of the SLC34A1 gene was 13%. Eight of the 10 DNA methylated CpG 
sites were associated with the prognosis of ccRCC. SLC34A1 expression in ccRCC was positively correlated with B cells, 
eosinophils, neutrophils, T cells, TFH, and Th17 cells, and negatively correlated with Tem, Tgd, and Th2 cells.
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Conclusion  The expression level of SLC34A1 in KIRC samples was found to be decreased, which predicted a 
decreased survival rate of KIRC. SLC34A1 may serve as a molecular prognostic marker and therapeutic target for KIRC 
patients.

Keywords  SLC34A1, Clear cell renal cell carcinoma, Diagnosis, Prognostic marker

Introduction
Renal cell carcinoma is one of the most prevalent malig-
nancies, accounting for 5% and 3% of all malignant 
tumors in men and women, respectively [1]. Clear cell 
renal cell carcinoma (ccRCC) is the most common sub-
type, comprising approximately 80% of all cases [2]. 
Despite the application of immunotherapy and targeted 
therapies, the survival rate of patients with advanced and 
metastatic ccRCC remains poor due to the development 
of drug resistance [3]. Therefore, identifying updated 
prognostic markers is crucial for developing new drugs 
for advanced-stage and metastatic ccRCC.

In recent years, bioinformatics analysis based on gene 
expression microarray has been useful in identifying 
key genes and central networks involved in tumorigen-
esis and development. Screening biological indicators of 
cancer treatment and prognosis is a promising approach. 
Researchers are increasingly using the GEO database 
to identify key genes related to cancer and make break-
throughs in cancer treatment. For example, Liu et al. [4] 
identified five key genes related to thyroid cancer after 
thorough analysis of the GEO database. Similarly, Zhou 
et  al. [5] identified 15 hub genes strongly enriched in 
multiple pathways related to hepatocellular carcinoma 
through bioinformatics analysis. Some scholars have also 
applied bioinformatics to diagnose and predict progno-
sis of renal cell carcinoma, finding potential targets for 
ccRCC diagnosis, therapy, and prognosis [6].

Building on these studies, we identified hub genes of 
ccRCC by analyzing gene expression profiles from the 
GEO database, selecting SLC34A1 for further investiga-
tion. In this study, we explore the relationship between 
SLC34A1 and immune cell infiltration and its diagnostic 
and prognostic value in ccRCC. We also investigate the 
relationship between SLC34A1-related genes and the 
prognosis of ccRCC, as well as gene mutation and DNA 
methylation, providing new target genes for future trans-
formation and clinical treatment. The study workflow is 
illustrated in Additional file 1: Fig. S1.

Materials and methods
Downloading raw data
We downloaded six gene expression profile datasets 
(including GSE66272, GSE53757, GSE68417, GSE168845, 
GSE96574, and GSE40435) from the GEO database 

(https://​www.​ncbi.​nlm.​nih.​gov/​geo/). The GSE66272 
dataset contains 26 ccRCC samples and 26 normal tis-
sue samples (a pair of sarcoma samples, GSM1618417 and 
GSM1618418, were excluded). The GSE53757 dataset con-
sists of 72 ccRCC samples and 72 adjacent tissue samples. 
The GSE68417 dataset includes 14 ccRCC samples and 
29 adjacent tissue samples. The GSE168845 dataset con-
tains 4 ccRCC samples and 4 normal tissue samples. The 
GSE96574 dataset contains 5 ccRCC samples and 5 adja-
cent normal tissue samples. The GSE40435 dataset includes 
101 ccRCC samples and 101 adjacent tissue samples. We 
obtained the original TCGA-KIRC file from the TCGA 
database (https://​portal.​gdc.​cancer.​gov/).

Differential gene detection
We processed the downloaded raw data using the anno-
tation package in the R software (version 3.6.3; https://​
www.r-​proje​ct.​org/). The gene probe names in the origi-
nal data files were changed to the international standard 
name using the Perl language. The R software package 
for gene differential expression analysis is available from 
the Bioconductor website (http://​www.​bioco​nduct​or.​
org/). We used the limma package to preprocess the gene 
expression data and obtain the differentially expressed 
genes (DEGs) in the gene expression data file [7]. We 
set P < 0.05 and |log2 fold change|≥ 2 as the screening 
threshold for DEGs. We obtained the intersection sets of 
up-regulated and down-regulated DEGs in ccRCC from 
the six datasets using the TBtools tool [8]. Volcanic maps 
represent the DEGs of six data sets.

Functional analysis and PPI network construction
We used online biological tools to investigate the bio-
logical process (BP), molecular function (MF), and cel-
lular component (CC) of the DEGs. We used DAVID 6.8 
(https://​david.​ncifc​rf.​gov/) for GO enrichment analysis 
and KEGG pathway analysis [9, 10]. KEGG pathways 
were derived from the KEGG database, which was initi-
ated in 1995 under the Japanese Human Genome Pro-
ject [11]. Its main role is to systematically analyze gene 
function and link genomic information with higher-order 
functional information [12]. The KEGG database inte-
grates various biological objects classified as systematic, 
genomic, chemical, and health information [13]. Each 
object (database entry) is identified by a KEGG identifier 
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(kid). We set P < 0.05 and FDR < 0.05 as critical thresholds 
for GO and KEGG pathway analysis. We used the ggplot2 
package of R software to create a histogram of the central 
path. We constructed a PPI network of the DEGs using 
the online website STRING (http://​string-​db.​org) and the 
Cytoscape program (version 3.9.0, http://​www.​cytos​cape.​
org/). We employed the cytoHubba plug-in in Cytoscape 
software to screen central genes.

Verification of protein expression
We analyzed and verified the protein expression level of 
hub genes using the UALCAN online tool (http://​ualcan.​
path.​uab.​edu/​index.​html) and the HPA database (http://​
www.​prote​inatl​as.​org/) [14, 15].

Expression and survival analysis of hub genes
We used the GEPIA web platform (http://​gepia.​cancer-​
pku.​cn/) based on TCGA and GTEx datasets to analyze 
the expression of hub genes in tumor and normal tissues 
and the relationship between hub gene expression and 
overall survival (OS) and disease-free survival (DFS). We 
verified the analysis results obtained by the GEPIA online 
tool using the UALCAN online tool and the ggplot2 
package in R software.

Clinical relevance, diagnostic ROC, and univariate/
multivariate cox risk regression analysis
The relationship between SLC34A1 and clinical variables, 
such as age, gender, pathological stage, histological grade, 
T stage, N stage, and M stage, was investigated using 
the R software package, ggplot2. The diagnostic value of 
SLC34A1 in ccRCC was analyzed using the ROC curve, 
which was created using the pROC software package in 
R [16]. To identify the independent prognostic factors 
of ccRCC, univariate/multivariate Cox risk regression 
analysis was conducted on SLC34A1 and seven clini-
cal factors (age, grade, pathological stage, histological 
grade, gender, T stage, M stage, and N stage) using the 
R software survival package [17]. The clinical data were 
obtained from the TCGA database.

Genes associated with SLC34A1
The SLC34A1 coexpression network in ccRCC was evalu-
ated using the LinkFinder module of the LinkedOmics 
database (http://​www.​linke​domics.​org/​login.​php) [18]. 
The volcano map depicted genes that were related to 
SLC34A1 expression, and the heat map displayed the top 
50 genes that were positively and negatively correlated 
with SLC34A1. GO term enrichment and KEGG path-
way analyses of SLC34A1-related genes were conducted 
to study their functions. The GEPIA online tool was used 

to verify the correlation and analyze the overall survival 
of the five co-expressed genes most related to SLC34A1.

Genetic changes in patients with ccRCC​
The genome map of SLC34A1 in ccRCC was analyzed 
using two data sets, TCGA Firehose Legacy and UTo-
kyo Net Genet 2013, in the cBioPortal database (http://​
www.​cbiop​ortal.​org/) [19, 20]. The association between 
changes in SLC34A1 and major carcinogenic drivers was 
assessed.

The relationship between the methylation level 
of the SLC34A1 gene and prognosis and the relationship 
between SLC34A1 and immune cells in patients with ccRCC​
The DNA methylation sites of SLC34A1 in the TCGA 
database were obtained using the Methsurv database 
(https://​biit.​cs.​ut.​ee/​meths​urv/) [21]. The prognostic  
value of CpG methylation in SLC34A1 was evaluated  
using overall survival as the survival outcome. The 
expression of SLC34A1 phosphoprotein was analyzed 
using the CPTAC online tool [22]. The infiltration rela-
tionship between SLC34A1 and immune cells was ana-
lyzed using the ssGSEA algorithm in the GSVA package. 
The statistical method used was Spearman, and the 
threshold was set at P< 0.05.

Real‑time RT‑PCR assay
From 2019 to 2021, twenty pairs of KIRC tissues and 
matched normal tissues were collected from patients who 
underwent surgery at Shandong Provincial Hospital. All 
patients were fully informed of the study’s purpose, and 
written consent was obtained. The ethical requirements of 
the Shandong Provincial Hospital Ethics Committee and 
the Helsinki Declaration were strictly followed. Total RNA 
was extracted from tissue lysates using the AG RNAex 
Pro Reagent (Accurate Biotechnology) and reverse tran-
scribed using the Evo M-MLV RT Premix (Accurate Bio-
technology). The SYBR® Green Premix Pro Taq HS qPCR 
(Accurate Biotechnology) kit was used to perform qRT-
PCR assay, and the LightCycle 480 II (Roche) was used 
to amplify the samples. The following primers were used: 
GAPDH-F: GGA​GCG​AGA​TCC​CTC​CAA​AAT, GAPDH-R: 
GGC​TGT​TGT​CAT​ACT​TCT​CATGG, SLC34A1-F: GTT​
GTC​CTA​CGG​AGA​GAG​GC,  SLC34A1-R:  GGA​AGG​
CAT​AGG​CAG​AGG​TC.

Immunohistochemical staining
Tumor tissue and matching normal kidney tissue were 
collected from 4 patients with ccRCC who underwent 
surgery at Shandong Provincial Hospital between Febru-
ary 2020 and June 2021. Each patient provided informed 
consent. The sections were dewaxed in xylene, rehydrated 

http://string-db.org
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http://www.proteinatlas.org/
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http://www.cbioportal.org/
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in graded ethanol, and underwent antigen retrieval in 
sodium citrate buffer (pH 6.0) at 95 °C for 20 min. After 
quenching endogenous peroxidase activity with 3% 
H2O2 and blocking non-specific binding with 1% bovine 
serum albumin buffer, the sections were incubated over-
night with the designated primary antibody at 4 °C. Fol-
lowing repeated washing, the sections were treated with 
HRP-conjugated secondary antibody at room tempera-
ture for 40 min and stained with DAB.

Statistical method
The Wilcox rank sum test was used to compare multiple 
groups of variables. The Spearman correlation coefficient 
was applied to evaluate the genes related to SLC34A1 
expression. The Spearman method was used to analyze 
the correlation coefficient of immune infiltration. P < 0.05 
was set as the statistically significant level.

Results
Identification of differentially expressed genes (DEGs)
The limma package was used to process the datasets, and 
DEGs were obtained in each of the six datasets based on 
the screening criteria (P < 0.05 and |log2 FC|≥ 2). The 
resulting DEGs are presented in Table 1. In the GSE66272 
dataset, we identified a total of 1014 DEGs, comprising 
515 upregulated and 499 downregulated DEGs (Fig. 1A). 
In the GSE53757 dataset, we identified 686 DEGs, com-
prising 294 upregulated and 392 downregulated DEGs 
(Fig.  1B). In the GSE68417 dataset, we identified 424 
DEGs, comprising 92 upregulated and 332 downregu-
lated DEGs (Fig. 1C). In the GSE168845 dataset, we iden-
tified 1674 DEGs, comprising 800 upregulated and 874 
downregulated DEGs (Fig. 1D). In the GSE96574 dataset, 
we identified 1096 DEGs, comprising 496 upregulated 
and 600 downregulated DEGs (Fig. 1E). In the GSE40435 
dataset, we identified 236 DEGs, comprising 71 upregu-
lated and 165 downregulated DEGs (Fig. 1F). The DEGs 
of the two groups of sample data in the six datasets are 
displayed on volcano plots. We intersected the upregu-
lated genes in all six datasets and obtained eight upreg-
ulated DEGs (Fig.  1G). Similarly, we intersected the 

downregulated genes in all six datasets and obtained 50 
downregulated DEGs (Fig. 1H).

Functional and PPI analysis of DEGs and identification 
of core genes
To investigate the functions of the 58 DEGs identi-
fied, we performed GO and KEGG analyses using the 
DAVID online service (threshold: P < 0.05, FDR < 0.05, 
and count ≥ 5). We sorted the results of functional 
enrichment and pathway analysis and presented them in 
Tables  2 and 3, respectively. We used the ggplot2 pack-
age in R software to visualize the analysis results. The 
GO enrichment analysis comprised two main functions: 
biological processes and cellular components. The cel-
lular components included "extracellular exosome," "api-
cal plasma membrane," "basolateral plasma membrane," 
"integral component of plasma membrane," "mitochon-
drial matrix," "plasma membrane," "extracellular region," 
and "extracellular space." The biological processes mainly 
included "excretion" and "gluconeogenesis" (Fig.  2A). 
According to KEGG pathway analysis, DEGs were sig-
nificantly enriched in Carbon metabolism, Antibiotic 
biosynthesis, Metabolic pathways, and Glycolysis/Glu-
coneogenesis (Fig. 2B). We obtained the protein–protein 
interaction network of DEGs using the STRING online 
platform and displayed the results using Cytoscape soft-
ware (Fig. 2C). We then identified the top five hub genes 
in all DEGs using the Degree algorithm of the cytoHubba 
plug-in in Cytoscape software: SLC34A1, KCNJ11, 
SLC12A3, CASR, and ALDOB (Fig. 2D). All these central 
genes were downregulated in ccRCC.

mRNA expression levels of hub genes
The authors analyzed the mRNA expression levels of the 
five hub genes using the GEPIA online analysis tool. The 
analysis showed a significant decrease in the expression 
of all five hub genes in ccRCC (Fig.  3A–E). To increase 
the reliability of the results, the expression of the hub 
genes was verified using the UALCAN online tool and 
the TCGA data set, which confirmed the significant 
downregulation of these genes in ccRCC (Fig.  3F–O). 

Table 1  The number of DEGs in GEO data sets

GEO Normal Tumor Number of DEGs Number of up-regulated 
genes

Number of genes 
down-regulated

GSE66272 26 26 1014 515 499

GSE53757 72 72 686 294 392

GSE68417 29 14 424 92 332

GSE168845 4 4 1674 800 874

GSE96574 5 5 1096 496 600

GSE40435 101 101 236 71 165
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Fig. 1  Volcano and Venn Maps of DEGs. Volcano maps were generated for each dataset, including GSE66272 (A), GSE53757 (B), GSE68417 (C), 
GSE168845 (D), GSE96574 (E), and GSE40435 (F). The x-axis represents logFC and the y-axis represents − log10(P value). Venn diagrams were 
generated to identify common up-regulated (G) and down-regulated (H) DEGs across the two datasets
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These results provide further evidence supporting the 
role of the hub genes in ccRCC pathogenesis.

Protein expression of hub genes
To investigate whether the protein expression levels of 
hub genes were also altered in tumor tissues, we used 
the UALCAN tool to analyze the protein expression of 
these genes. The results showed that the protein expres-
sion levels of hub genes were significantly reduced in 
ccRCC when compared to normal tissues (Fig.  4A–E). 
We further compared the protein expression levels in 
cancer and normal tissues using the Human Protein Atlas 
(HPA). Staining intensity and quantity were evaluated 
as indicators of protein expression levels in tumor and 
normal tissues. Our analysis revealed that compared to 
normal tissues, the protein expression levels of ALDOB, 
CASR, KCNJ1, SLC34A1, and SLC12A3 were signifi-
cantly lower in ccRCC tissues, as evidenced by reduced 
staining, intensity, and quantity (Fig. 4F).

Prognostic analysis of hub genes in ccRCC​
The prognostic value of the five hub genes was evalu-
ated using the GEPIA online tool. Among them, ALDOB, 
CASR, and SLC34A1 were found to have the potential 
to predict the prognosis of patients with ccRCC. The 
results showed that low expression of ALDOB, CASR, 

and SLC34A1 in patients with ccRCC was associated 
with lower overall survival (Fig. 5A, B, D), while no sig-
nificant difference was observed in the other hub genes 
(Fig.  5C–E). Similarly, individuals with poor expression 
of the three hub genes also had lower disease-free sur-
vival rates (Fig.  5F, G, I), while no significant difference 
was observed among the other hub genes (Fig.  5H–J). 
The results of overall survival for the three hub genes 
were consistent with those obtained using UALCAN 
(Fig. 5K–O).

Clinical features of ccRCC​
We obtained clinical information and gene expres-
sion profile matrices for 539 primary tumors and 72 
normal ccRCC samples from the TCGA database. The 
data includes patients’ age, gender, grade, stage, distant 
metastasis, T classification, and lymph node metastasis 
(Table 4).

Clinical features, diagnosis, and prognostic value 
of SLC34A1
In patients with ccRCC, lower expression levels of 
SLC34A1 tend to be associated with more advanced 
cancer stages. The expression of SLC34A1 is correlated 
with age (Fig.  6A), gender (Fig.  6B), pathological stage 
(Fig.  6C), T stage (Fig.  6D), and M stage (Fig.  6E). This 
suggests that the decreased expression of SLC34A1 may 
be linked to cancer progression. The diagnostic value of 
SLC34A1 was evaluated by the diagnostic ROC curve, 
which showed that the area under the curve for SLC34A1 
was 0.776 (Fig. 6F). To determine whether SLC34A1 may 
be a potential prognostic factor, a Cox regression analy-
sis was performed. Univariate Cox risk regression anal-
ysis indicated that age, pathological stage, histological 
grade, T stage, N stage, M stage, and SLC34A1 expres-
sion were all significantly associated with OS of ccRCC 
(all P < 0.001) (Table 5). Multivariate Cox risk regression 

Table 2  GO analysis of intersecting genes

Category Term Count P value FDR

GOTERM_CC_DIRECT GO:0070062 ~ extracellular exosome 36 3.28E−15 3.38E−13

GOTERM_BP_DIRECT GO:0007588 ~ excretion 6 1.26E−07 5.91E−05

GOTERM_CC_DIRECT GO:0016324 ~ apical plasma membrane 10 2.74E−07 1.41E−05

GOTERM_CC_DIRECT GO:0016323 ~ basolateral plasma membrane 8 1.42E−06 4.88E−05

GOTERM_BP_DIRECT GO:0006094 ~ gluconeogenesis 5 1.27E−05 0.002974682

GOTERM_CC_DIRECT GO:0005887 ~ integral component of plasma membrane 15 8.72E−05 0.002246264

GOTERM_CC_DIRECT GO:0005759 ~ mitochondrial matrix 7 5.36E−04 0.011034772

GOTERM_CC_DIRECT GO:0005886 ~ plasma membrane 25 7.95E−04 0.013652422

GOTERM_CC_DIRECT GO:0005576 ~ extracellular region 14 0.001159845 0.017066292

GOTERM_CC_DIRECT GO:0005615 ~ extracellular space 12 0.0027051 95 0.034829387

Table 3  KEGG pathway analysis of intersection genes

Term Count P value FDR

hsa01200:Carbon metabolism 7 2.24E−05 0.002062412

hsa01130:Biosynthesis of antibiotics 8 9.32E−05 0.004287886

hsa01100:Metabolic pathways 17 1.77E−04 0.005434928

hsa00010:Glycolysis/Gluconeogen-
esis

5 3.83E−04 0.008808888
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analysis further revealed that histological grade, M stage, 
and SLC34A1 expression were significantly associated 
with the overall survival of ccRCC (all P < 0.05).

Genes associated with SLC34A1 expression
Using the LinkedOmics online tool’s LinkFinder func-
tion module, we identified 3234 genes positively asso-
ciated with SLC34A1 expression and 2914 genes 
negatively associated with it in ccRCC (Fig.  7A). The 
heat map in Fig.  7B shows the top 50 positively asso-
ciated genes with SLC34A1, while the heat map in 
Fig. 7C displays the top 50 negatively associated genes. 
GO enrichment analysis revealed that SLC34A1 and 
its positive related genes are primarily involved in 

biological processes such as immune response regula-
tion, organic cation transport, innate immune response 
regulation, small molecule catabolic process, peroxi-
somal transport, cytokine secretion, immune effector 
process regulation, and cytoskeleton-dependent intra-
cellular transport. On the other hand, genes negatively 
related to SLC34A1 expression are mainly involved in 
cellular components and biological processes, such as 
mitochondrial respiratory chain complex assembly, 
NADH dehydrogenase complex assembly, mitochon-
drial protein complex, respiratory chain, mitochondrial 
membrane part, NADH dehydrogenase complex, oxi-
doreductase complex, mitochondrial inner membrane, 
and small nuclear ribonucleoprotein complex (Fig. 7D, 

Fig. 2  Functional and PPI network analysis of DEGs. A GO enrichment analysis of DEGs; B KEGG pathway analysis of DEGs. C PPI network of all DEGs 
built using Cytoscape software. D Identification of the top five central DEGs using the cytoHubba plugin, with grades indicated by varying degrees 
of color (from red to yellow)
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E). KEGG pathway analysis showed that the positively 
related genes were mainly concentrated in the peroxi-
some pathway, while the negatively correlated genes 
were primarily involved in the Non-alcoholic fatty liver 
disease (NAFLD) and Alzheimer’s disease pathways 
(Fig. 7F).

The top 5 genes with the strongest correlation to 
SLC34A1 were selected from the list of genes related 
to SLC34A1. These five genes were found to be posi-
tively correlated with SLC34A1 expression, and they are 
SLC5A10, AGPAT3, ATP6V1B2, SLC35D2, and CIRH1A. 
To confirm the correlation between SLC34A1 and these 
five genes and investigate their impact on the prognosis 
of ccRCC patients, we used the GEPIA online tool. The 
analysis revealed that SLC5A10, AGPAT3, ATP6V1B2, 
SLC35D2, and CIRH1A were significantly correlated with 
SLC34A1 (Fig. 8A–E), and these five genes were associated 
with better overall survival in ccRCC patients (Fig. 8F–J).

SLC34A1 expression changes in patients with ccRCC​
We analyzed two ccRCC datasets from the cBioPortal 
database, UTokyo Nat genet 2013 and TCGA Firehose 
Legacy, which contained a total of 643 ccRCC patients. 
The genetic variation frequency of SLC34A1 in ccRCC 
was found to be 13% (Fig.  9A), with a range of 0.94% 
(1/106) to 15.82% (84/531) (Fig.  9B). The frequency of 
gene changes in the SLC34A1 altered group was sig-
nificantly higher than in the SLC34A1 unchanged group 
(Fig.  9C). We observed that among the major carcino-
genic factors of ccRCC, VHL and BAP1 changed more 
frequently in ccRCC patients with SLC34A1 than in those 
without (VHL: 58.82% vs. 43.66%, P = 6.343e−3; BAP1: 
26.19% vs. 14.31%, P = 6.298e−3) (Fig. 9D). The top five 
genes with the highest frequency in the SLC34A1 altera-
tion group were B4GALT7, DOK3, FAM193B, HK3, and 
PDLIM7 (Fig. 9E).

Fig. 3  mRNA expression levels of hub genes in ccRCC. A–E show results obtained from GEPIA for A ALDOB, B CASR, C KCNJ1, D SLC34A1, and E 
SLC12A3. F–J show results obtained from UALCAN for the same genes. K–O show results obtained from the TCGA dataset. Statistically significant 
differences (*P < 0.001) are indicated
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Methylation and phosphoprotein expression of SLC34A1 
in ccRCC and its correlation with immune cell infiltration
We evaluated the methylation level of SLC34A1 and the 
impact of each CpG on ccRCC prognosis using the Meth-
Surv online tool. Our analysis showed that SLC34A1 has 
10 methylation sites, with the highest methylation levels 
observed at cg04486885 and cg05207973 (Fig.  10A). Of 
the 8 methylation sites associated with prognosis, namely 
cg05901447, cg06470558, cg06501790, cg14819088, 
cg18126247, cg18459405, cg21145248, and cg26586952 
(Table 6), patients with high SLC34A1 methylation levels 
at these sites exhibited worse overall survival compared 
to those with low methylation levels. We also found that 
SLC34A1 was positively correlated with the infiltration 
levels of B cells, eosinophils, neutrophils, T cells, TFH, 
and Th17 cells, and negatively correlated with the infiltra-
tion levels of Tem, Tgd, and Th2 cells (P < 0.05) (Fig. 10B). 
Using the CPTAC database, we analyzed the expres-
sion of SLC34A1 phosphoprotein in ccRCC. Our results 
revealed that the expression of SLC34A1 phosphoprotein 
at the T623S625, S625, and S34 phosphorylation sites 
was significantly lower in primary ccRCC tumors than in 
normal renal tissues (P < 0.001) (Fig. 10C–E).

Expression verification of SLC34A1 in clinical samples
To verify the expression of SLC34A1, we used qRT-PCR 
and IHC assay to detect the expression level of SLC34A1 
in ccRCC tissues. The results confirmed that SLC34A1 
was significantly decreased in ccRCC tissues (Fig. 11).

Discussion
Renal cell carcinoma is a highly prevalent form of cancer 
in humans, with over 338,000 new cases reported globally 
in 2012, accounting for 24% of all malignancies. It is esti-
mated that 143,000 people died from kidney cancer that 
year, making it the 16th leading cause of cancer-related 
deaths worldwide [23]. Due to its complex molecular 
mechanism and insensitivity to traditional cancer thera-
pies, it is crucial to gain a deeper understanding of the 
molecular mechanisms of ccRCC, improve risk assess-
ment, guide clinical decision-making, and enhance the 
diagnosis, treatment, and prognosis of this disease.

Recently, bioinformatic analyses based on gene expres-
sion microarrays have provided valuable insights into 
the pathogenesis of ccRCC and identified potential diag-
nostic and therapeutic targets by collecting and ana-
lyzing relevant data [24]. From six datasets in the GEO 

Fig. 4  Protein expression levels of hub genes in ccRCC. A–E show the results obtained through UALCAN. A ALDOB, B CASR, C KCNJ1, D SLC34A1, 
E SLC12A3. ***P < 0.001 indicates statistical significance. F Representative tissue microarray (TMA) slides showing protein staining of hub genes 
obtained by HPA
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database, a total of 58 overlapping DEGs (8 up-regulated 
genes and 50 down-regulated genes) were identified. The 
five genes with the highest scores were selected as hub 
genes in the PPI network: SLC34A1, KCNJ1, SLC12A3, 
CASR, and ALDOB. Further analysis using the GEPIA 
online tool revealed that ccRCC patients with low lev-
els of SLC34A1, CASR, and ALDOB had poorer overall 
survival. Additionally, low SLC34A1, CASR, and ALDOB 
expressions were associated with poorer DFS.

ALDOB encodes for aldolase B, a protein primarily 
expressed in the liver and kidney that plays a role in gly-
colysis and fructose decomposition [25]. Low ALDOB 
expression has been linked to various diseases, including 
hepatocellular carcinoma, colon adenocarcinoma, and 
hereditary fructose intolerance (HFI). For example, Liu 
et al. [26] found that aldob downregulation can activate 
the upregulation of IR signal and adipogenesis in human 
HCC tumor tissue to promote the occurrence of HCC. 
Research has also shown that low ALDOB expression is 
associated with poor prognosis in ccRCC [27], consistent 
with the findings of the current study.

Calcium-sensitive receptor (CASR), a member of the 
G-protein-coupled receptor (GPCR) family, is mainly 
expressed in the parathyroid gland and renal tubules. 
Abnormalities in CASR can cause various diseases, 
including familial hypocalcemia, hypercalcemia, autoso-
mal dominant hypocalcemia, and V-type Bart syndrome 
[28, 29]. CASR’s role in promoting or inhibiting tumor 
development varies depending on the type of cancer. Li 
et  al. [30] Found that CASR may pass GSK3β/Cyclin, 
inhibiting the development of human lung adenocarci-
noma. In contrast, in gastric cancer, Xie et al. [31] believe 
that CASR is related to the tumor progression of gas-
tric cancer and the poor survival rate of these patients. 
Unfortunately, although some studies have pointed out 
that the expression level of CASR in primary ccRCC is 
very low when metastatic RCC expresses CASR, extracel-
lular calcium will promote the cell migration and prolif-
eration of bone metastatic RCC cells through CASR and 
its downstream signaling pathway [32]. Therefore, we 
cannot use CASR as a marker of a positive prognosis.

Fig. 5  Association between central gene expression levels and overall survival (OS) and disease-free survival (DFS). A–E show OS results obtained 
through the GEPIA online platform for ALDOB, CASR, KCNJ1, SLC34A1, and SLC12A3, respectively. F–J show DFS results obtained through GEPIA for 
the same genes. K–O show results obtained through the UALCAN online platform for the same genes. Statistically significant results are indicated 
by P < 0.05
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The influence of KCNJ1 and SLC12A3 among the five 
hub genes on DFS in ccRCC patients was not statisti-
cally significant, and CASR would lead to the migration 
and proliferation of metastatic RCC cells. The literature 
review found that the detailed mechanism of ALDOB 
inhibiting the progression of renal cell carcinoma has 
been confirmed by other scientists [33]. Finally, the 
author decided to select SLC34A1 for further analysis 
and research. This involved studying the relationship 
between SLC34A1 and its related gene mutations, phos-
phoprotein expression, DNA methylation, and immune 
cell infiltration to explore the value of SLC34A1 in the 
occurrence and development of renal cell carcinoma.

SLC is a family of membrane-binding proteins, consist-
ing of more than 300 proteins that facilitate the trans-
port of various substrates across biofilms [34]. SLC34A1 
is responsible for coordinating the transport of sodium 
phosphate by regulating phosphate reabsorption in 
proximal tubules [35]. Autosomal recessive mutations in 
SLC34A1 can lead to idiopathic infantile hypercalcemia 
[36]. In our study, we observed that the mRNA and pro-
tein expression of SLC34A1 was significantly downregu-
lated in ccRCC samples compared to normal samples. 
SLC34A1 expression displayed strong discriminatory 

power in distinguishing ccRCC tumors from normal 
tissues. Additionally, SLC34A1 exhibited significant 
correlation with clinicopathological features at the tran-
scriptome level, such as age, gender, T stage, pathological 
stage, and M stage. Furthermore, SLC34A1 was identified 
as an independent predictive factor in both univariate 
and multivariate analyses for ccRCC patients.

Analysis of SLC34A1-related genes revealed that most 
of these genes are involved in biological processes such as 
immune response-regulating signaling pathways, organic 
cation transport, and regulation of innate immune 
response. The five genes with the strongest correlation to 
SLC34A1 are associated with better prognosis in patients 
with ccRCC. SLC5A10 is a sodium-dependent trans-
porter that may be involved in decreasing serum 1,5-AG 
levels in diabetic patients [37]. However, its potential 
mechanism is still not well understood due to limited 
research. AGPAT3 is an enzyme related to lipid metabo-
lism that promotes DHA accumulation in the brain, pro-
viding DHA-PLs [38]. It is also highly expressed in gastric 
cancer patients with good prognosis [39]. ATP6V1B2 
encodes the subunit of V-ATPase, which is respon-
sible for lysosomal acidification [40]. Abnormality in 
ATP6V1B2 can lead to Zimmermann–Laband syndrome 
and dominant deafness onychodystrophy syndrome [41, 
42]. SLC35D2 is a member of the SLC35 nucleotide sugar 
transporter family and plays an essential role in the syn-
thesis of glycosaminoglycans (GAGs) [43]. CIRH1A is a 
human ribosomal protein, and a homologous missense 
mutation at the C-terminal of CIRH1A can lead to cir-
rhosis (NAIC) in North American Indian children [44]. 
It is abundant in colon cancer and enhances the develop-
ment of RKO colorectal cancer cells [45]. Based on pre-
vious experimental data and our survival analysis, these 
genes may be potential candidate genes for inhibiting 
cancer development.

In 643 ccRCC patients, the genetic change frequency of 
the SLC34A1 gene was 13%, and most SLC34A1 changes 
were represented by amplification, indicating a close 
association between SLC34A1 mutation and ccRCC. The 
top five genes with the highest frequency in the SLC34A1 
change group were B4GALT7, DOK3, FAM193B, HK3, 
and PDLIM7. Furthermore, changes in SLC34A1 were 
associated with changes in VHL and BAP1, which are 
factors that inhibit the progression of ccRCC. DNF 
methylation occurs in almost all cancers as a common 
modification mechanism. In our study, we examined the 
association between SLC34A1 DNA methylation and the 
prognosis of ccRCC patients, and found that hypermeth-
ylation of eight CpG sites was associated with poor over-
all survival.

Table 4  Clinical features of ccRCC from the data set of TCGA 
database

Characteristic Levels Overall

n 539

Age, n (%)  <  = 60 269 (49.9%)

 > 60 270 (50.1%)

Gender, n (%) Female 186 (34.5%)

Male 353 (65.5%)

Pathologic stage, n (%) Stage I 272 (50.7%)

Stage II 59 (11%)

Stage III 123 (22.9%)

Stage IV 82 (15.3%)

Histologic grade, n (%) G1 14 (2.6%)

G2 235 (44.3%)

G3 207 (39%)

G4 75 (14.1%)

T stage, n (%) T1 278 (51.6%)

T2 71 (13.2%)

T3 179 (33.2%)

T4 11 (2%)

N stage, n (%) N0 241 (93.8%)

N1 16 (6.2%)

M stage, n (%) M0 428 (84.6%)

M1 78 (15.4%)



Page 12 of 18Qiu et al. BMC Urology           (2023) 23:45 

The tumor microenvironment has a significant impact 
on cancer occurrence, development, and metastasis, 
with tumor-associated immune cells being a crucial part 
of it. Currently, clinical therapy utilizes cytokine and 
immune checkpoint inhibitors [46, 47]. This study found 

a correlation between SLC34A1 and various immune 
cells, including B cells, eosinophils, neutrophils, T cells, 
TFH, and Th17 cells, with positive correlation, and Tem, 
Tgd, and Th2 cells, with negative correlation. Eosinophils 
have been linked to a favorable prognosis of ccRCC and 

Fig. 6  This shows the association between SLC34A1 expression and clinical characteristics, as well as the diagnostic value of SLC34A1. A–E 
The expression of SLC34A1 was significantly correlated with age (P = 0.01), gender (P = 4.2e−04), pathological stage (P = 2.5e−03), T stage 
(P = 6.6e−03), and M stage (P = 0.02). F The diagnostic ROC curve was used to distinguish between tumor and normal tissue, with an area under 
the curve (AUC) of 0.776

Table 5  Cox regression analysis of prognostic factors in patients with clear cell renal cell carcinoma (univariate and multivariate)

Characteristics Univariate analysis Multivariate analysis

Hazard ratio (95% CI) P value Hazard ratio (95% CI) P value

Age 1.765 (1.298–2.398) < 0.001 1.480 (0.949–2.308) 0.084

Gender 0.930 (0.682–1.268) 0.648

Pathologic stage 3.946 (2.872–5.423) < 0.001 1.232 (0.485–3.132) 0.660

Histologic grade 2.702 (1.918–3.807) < 0.001 1.682 (1.025–2.761) 0.040

T stage 3.228 (2.382–4.374) < 0.001 1.549 (0.680–3.529) 0.298

N stage 3.453 (1.832–6.508) < 0.001 1.653 (0.824–3.314) 0.157

M stage 4.389 (3.212–5.999) < 0.001 2.584 (1.520–4.393) < 0.001

SLC34A1 0.515 (0.377–0.704) < 0.001 0.612 (0.389–0.963) 0.034
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Fig. 7  Gene and functional enrichment analysis related to SLC34A1. A Volcano plot displaying 3234 genes that were positively correlated with 
SLC34A1 expression and 2914 genes that were negatively correlated with SLC34A1 expression. B Heatmap showing the top 50 genes positively 
correlated with SLC34A1 expression. C Heatmap showing the top 50 genes negatively correlated with SLC34A1 expression. D Gene Ontology 
analysis of SLC34A1-related genes, highlighting biological processes. E Gene Ontology analysis of SLC34A1-related genes, highlighting cellular 
components. F Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of SLC34A1-related genes

Fig. 8  Confirmation of genes with the highest correlation to SLC34A1 expression and their relationship with ccRCC prognosis. A–E show the 
correlation of the top five genes: A SLC5A10, B AGPAT3, C ATP6V1B2, D SLC35D2, and E CIRH1A. F–J show that SLC5A10, AGPAT3, ATP6V1B2, 
SLC35D2, and CIRH1A were significantly correlated with better overall survival in patients with ccRCC​
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are an independent predictor of nivolumab treatment in 
metastatic patients [48]. Our findings also suggest that 
SLC34A1 may play a crucial role in immune regulation, 
as it was positively correlated with Th17 cells and nega-
tively correlated with Th2 cells. Conversely, higher lev-
els of T17 cells were correlated with improved survival 
rates in ccRCC patients, while Th2 cells were associated 
with negative results [49]. These results indicate that 
SLC34A1 could reflect the state of the ccRCC immune 
microenvironment and could be a potential diagnostic 
and predictive biomarker, as well as a treatment option 
for ccRCC. In addition, clinical samples were used to 
verify that the mRNA and protein expression levels of 
SLC34A1 in ccRCC tissues were significantly lower than 
those in normal kidney tissues.

We analyzed the potential hub genes and signaling 
pathways involved in the development of ccRCC using 
DEGs of ccRCC and normal tissues. Furthermore, we 
verified the value of SLC34A1 in the diagnosis and 
prognosis of ccRCC. SLC34A1 DNA methylation was 
found to be related to ccRCC prognosis. In conclusion, 
our study suggests that SLC34A1 has the potential to 
be a diagnostic and prognostic marker for ccRCC and 
could be a target for clinical diagnosis, prognosis, and 
treatment. However, our study has limitations, includ-
ing the need to expand the sample size to increase the 
credibility of our results and to conduct more basic 
research to validate our findings and promote clinical 
applications.

Fig. 9  SLC34A1 genetic mutations in ccRCC. A The frequency of SLC34A1 mutations among individuals with ccRCC. B The incidence of SLC34A1 
alterations in ccRCC patients. C Gene alteration frequency was significantly higher in the SLC34A1 altered group compared to the SLC34A1 
unaltered group. D Association between SLC34A1 mutations and changes in major carcinogenic drivers. E Top five genes with the highest 
frequency of alterations in the SLC34A1 change group
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Conclusions
The results of this study show that the expression level of 
SLC34A1 is significantly lower in ccRCC. This suggests 
that SLC34A1 may serve as a valuable diagnostic and 
prognostic marker for ccRCC, and that SLC34A1 DNA 
methylation could be linked to the prognosis of ccRCC 
patients. Further research is needed to explore the poten-
tial of SLC34A1 as a target for the clinical diagnosis, 
prognosis, and treatment of ccRCC. In particular, more 
basic research is required to validate these findings and 
promote their clinical application.

Fig. 10  Methylation level and phosphoprotein expression of SLC34A1 in ccRCC and its correlation with immune cell infiltration. A Visualization 
of SLC34A1 methylation levels. B Correlation analysis showing that SLC34A1 is positively associated with the infiltration of B cells, eosinophils, 
neutrophils, T cells, TFH, and Th17 cells, and negatively associated with the infiltration of Tem, Tgd, and Th2 cells. **P < 0.01and *P < 0.05 were both 
statistically significant. C–E CPTAC analysis of SLC34A1 phosphoprotein expression at T623S625, S625, and S34 sites in primary ccRCC tumors and 
normal renal tissues. ***P < 0.001 was statistically significant

Table 6  Effects of hypermethylation level of SLC34A1 on the 
prognosis of ccRCC​

CpG HR P value

cg04486885 0.76 0.252742

cg05207973 1.269 0.224987

cg05901447 3.478 0.00035

cg06470558 1.851 0.023503

cg06501790 6.611 7.18E−06

eg14819088 3.098 0.000388

eg18126247 7.371 1.31E−05

eg18459405 3.126 0.000351

cg21145248 3.443 0.00011

cg26586952 3.567 0.000265
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